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Abstract—Multi-camera multi-target tracking is one of the
most active research topics in computer vision. However, many
challenges remain to achieve robust performance in real-world
video networks. In this paper we extend the state-of-the-art
single camera tracking method, with both detection and crowd
simulation, to a multiple camera tracking approach that exploits
crowd simulation and uses principal axis-based integration. The
experiments are conducted on PETS 2009 data set and the
performance is evaluated by multiple object tracking precision
and accuracy (MOTP and MOTA) based on the position of
each pedestrian on the ground plane. It is demonstrated that
the information from crowd simulation can provide significant
advantage for tracking multiple pedestrians through multiple
cameras.

I. INTRODUCTION

Pedestrian tracking, especially in crowded scenarios, has
been attractive to computer vision researchers for many years.
For the purpose of applying pedestrian tracking in various
areas of real life such as surveillance, security, and monitoring,
hundreds of approaches have been proposed in the past several
decades. While the approaches for single camera tracking
have become more and more sophisticated to handle some
extremely complicated situations, fusing the information from
multiple cameras is another common technique to improve
tracking performance. By integrating information from differ-
ent views, one can greatly expand the area under surveillance
by deploying multiple cameras focused on different areas,
as well as improve the accuracy for tracking by using a
series of cameras with overlapping field-of-views to reduce
the influence from occlusion, etc [1].

In the proposed approach, we are focused on the situation
where a set of overlapping cameras is used to track pedestrians
by integrating the information from multiple views of the
same area. A common way is to adopt homography-related
methods to model the relationship of the information obtained
from different cameras so that the actual position of each
tracked pedestrian in the real-world can be easily estimated.
However, in almost all the current multiple camera trackers,
the estimation of real- world position is only related to its
corresponding position on the frame from each view, but
other relationships between the real-world position of each
pedestrian are somehow ignored.

From another perspective, crowd simulation is a type of
method utilizing the relationship between the real world posi-
tion of each pedestrian, which is also a very popular topic in

computer graphics, with special importance in the areas such
as designing emergency evacuation routes. Basically, crowd
simulation is designed for simulating the behavior of every
individual in a crowd under the given constraints (e.g., to avoid
collisions). Currently the most popular crowd simulations are
mainly focused on the simulation of walking (direction and
velocity) of pedestrians given the starting and ending positions
of each individual. Since the direction and velocity information
can be easily acquired in a multiple camera tracking system, it
is natural to consider integrating crowd simulation algorithms
to provide additional information for accurate positioning in a
tracking system.

In this paper, we propose an appropriate way to combine
the multiple camera tracking system with a crowd simulation
algorithm. In our integrated system, each camera has its
own independent tracker based on the tracking-by-detection
approach [2], and the simulator works, separately of the
tracking system, based on the RVO2 library [3]. At each
time step, the simulator generates a distribution of possible
positions for each pedestrian in the scene based on their current
positions and historical direction and velocity information.
This distribution is adopted together with the information from
trackers to estimate the current position of each pedestrian on
the real ground plane, and further serves as the feedback to
each tracker. The system diagram is illustrated in Figure 1.

The rest of the paper is organized as follows. Section
II presents related work, including tracking approaches and
crowd simulation methods. Section III describes the details of
our proposed approach. Section IV demonstrates the experi-
mental results and finally Section V concludes the paper.

II. RELATED WORK

The state-of-the-art tracking approaches usually take the
advantages of combining classification and detection methods,
and most of them perform in an online manner. Examples
are: Online Ada-Boosting [4], Semi-Boosting [5] and Online
Multiple Instance Learning [6] trackers. Generally speaking,
this type of tracking trains a classifier for the appearance model
from the first one or several frames. For the subsequent frames,
it finds the position that maximizes the likelihood based on the
evaluation from the classifier in a certain search window, and
then bootstraps the classifier itself by using the information of
the patch at the updated location. In addition to classification,
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Fig. 1. The system diagram. This example is a system with v different views.

detection methods, especially human detectors are also inte-
grated into the tracking system [7], [2]. Since human detector
is generally more confident than tracker itself, the result from
human detector is always used as an automatic initializer for
the tracker and a strong corrective factor during the tracking
process. The tracking part in the proposed approach used in
this paper is based on the most recent tracking-by-detection
method [2], which combines a particle filter, a human detector
and an online boosting classifier.

When multiple cameras are used, the tracking system be-
comes more complicated and more research topics can be
found. For example, the data correspondence between cameras
is an important problem without a perfect solution till now.
Many different methods, such as region-based, point-based and
principal axis-based, have been reported in recent years [1],
[8]. Since in this paper, we are focused on the improvement
brought by the crowd simulation to multiple camera tracking,
manual data correspondence is used to avoid the error from
automatic data correspondence. However, the real position of
each individual on the ground plane is still calculated based
on the principal axis intersection.

For crowd simulation, there are many different models due
to the complexity and uncertainty of human behaviors. For
example, the social force model which is derived from physics
and social-psychology and currently the most widely used [9];
the RVO2 (Reciprocal Velocity Obstacles) library which uses
linear programming to find the optimal collision avoidance
strategy [3]; the rule-based approaches combined with local
collision avoidance is simple but effective [10]; and the
continuum dynamics model from a macroscopic perspective is
able to simulate extremely large and dense crowds [11]. Except
the macroscopic techniques, most of the crowd simulation
approaches are point (individual) based. For example, the
social force model considers the crowd as a particle system
and defines several different types of forces on each particle
(individual) to obtain a solution to the whole system. In the
proposed approach, the crowd simulation method adopted is
the RVO2 library [3], because it only requires the information
of the current position and the desired velocity of each
pedestrian, which is quite easy to obtain. In addition, the
calculation for the RVO2 model is relatively fast, allowing us
to get the distribution of possible locations which is required
at many times during the simulation at each time step.

III. TECHNICAL APPROACH

The system can be divided into two major components.
The first component consists of the state-of-the-art tracking-
by-detection algorithm (frame tracker), which provides the
capability to track pedestrians only based on the information
from a single camera. The second component is the position
calculator in the real world (global tracker). It integrates the
information from the crowd simulator and the projection from
each frame tracker, and estimates the real position for each
pedestrian on the ground plane.

A. Frame Tracker

The frame tracker in this approach is a sophisticated
tracking-by-detection method combining a particle filter, a
boosting classifier, and a human detector [2]. However, since
our main purpose is to investigate the benefit of crowd simu-
lation, we modify the original technique to eliminate possible
errors brought by various steps, as well as speed up the single
camera tracking process. For readers who are interested in the
complete method, please refer to the paper [2].

The tracking is accomplished mainly based on a bootstrap
filter. The state x = {x, y, u, v}, consists of the information of
position (x, y) and velocity (u, v) of each particle (on image
frames). Since importance re-sampling is carried out at every
time step and wi

t−1 = 1/N , the weight of each particle at every
time step wi

t only depends on the likelihood of the current
observation, p(ot|xit), which will be described at the end of
this section.

The motion model adopted in this particle filter is a simple
constant velocity motion model

(x, y)t = (x, y)t−1 + (u, v)t−1 + ε(x,y) (1)
(u, v)t = (u, v)t−1 + ε(u,v) (2)

where ε(x,y) and ε(u,v) are two independent noise func-
tions following zero-mean normal distributions. The variances
σ2
(x,y) and σ2

(u,v) are set initially proportional to the size of
the patch and then decrease as the number of successfully
tracked frames increases. For simplicity, we skip the Iterative
Likelihood Weighting procedure adopted in the original tracker
to deal with abrupt and fast camera motion. Furthermore, we
initialize the tracker by manual annotations to ensure that
each pedestrian has a corresponding tracker. The termination
strategy of a tracker is the same as the original work, that is,
each tracker stops if there are no associated detection results
for a while.

The information provided by the human detector includes
two parts, the normal detection results and the confidence map.
For the normal detection results, it is required to associate
them with each tracker. A function [2] calculates the matching
scores between each detected patch and tracked patch

S(tr, d) = g(tr, d) ·

(
ctr(d) + α ·

N∑
p∈tr

pN (d− p)

)
(3)

where tr and d denote the positions of the tracker and
the detected patch, respectively. pN (d − p) is the normal



distribution based on the distance between the detection and
particle, ctr(d) is the evaluation from the classifier on the
detected patch, and g(tr, d) is the gating function

g(tr, d) = p(sized|tr)p(posd|tr) (4)

=

 pN

(
sizetr−sized

sizetr

)
·pN (|d− tr|), if |vtr|<τv

pN

(
sizetr−sized

sizetr

)
·pN (dist(d, vtr)), otherwise

where vtr is the velocity of current tracker and dist(d, vtr) is
the distance from the detected position to the velocity (distance
between point and line). The distribution pN (dist(d, vtr)) has
a shape similar to a 2D cone, which provides the constraint of
possible positions of the tracker in the next frame when the
current velocity exceeds certain threshold τv .

After the pairwise matching scores have been computed
for every pair between trackers and detected patches, the
determination of association follows a greedy strategy. At
every iteration, the algorithm selects the largest matching score
s∗(tr∗, d∗) in the current remaining pairs of trackers and
detected patches. If s∗ is greater than a predefined threshold τ ,
then this pair of tracker and detected patch (tr∗, d∗) is marked
as associated. In order to satisfy the constraint that one tracker
(detected patch) can be associated to at most one detected
patch (tracker) only, all pairs containing the associated tracker
tr∗ or detected patch d∗ will be removed from the remaining
pair set. This procedure continues until there is no pair has a
matching score greater than the threshold τ . It is noticeable
that by using this greedy strategy, it is not guaranteed that
we can get the global optimal solution (e.g., the maximum
summation of matching scores) for this pairwise matching
problem. However, the result obtained using greedy method
is usually acceptable with a much lower computational cost.

Another one of the three important components combined
in this tracker is the boosting classifier from [4]. For each
tracker, there is an associated classifier. This classifier uses a
boosting mode which consists of a series of weak classifiers.
The classifier is initialized when the tracker is initialized, based
on the information from the first frame. The positive sample
is the patch at the current tracker location and the negative
samples come from the nearby patches (background). At each
frame, after the patch location is updated, this classifier also
updates using the most recent information.

The observation model to weigh the particles is based on
the output from both the detector and the classifier.

wtr,p = β·I(tr)·pN (p− d∗)+ γ·dc(p)·p0(tr)+ η·ctr(p) (5)

The first two terms in Equation 5 are related to the output of
the detector and the third term is obtained from the classifier.
I(tr) is the indicator function which is equal to 1 if there is
a detected patch d∗ associated to the tracker tr and is equal
to 0 otherwise. In the second term, dc(p) is the confidence
produced by the detector at position p, which is scaled to
[0, 1]. p0(tr) is called interobject occlusion reasoning, which is
designed for the situation when the detection is failed because

of the occlusion. Thus, it is defined as

p0(tr) =


1, if I(tr) = 1

max
tr′:I(tr′)=1

pN (tr − tr′), else if ∃I(tr′) = 1

0, otherwise
(6)

In [2], authors apply two different human detectors: Implicit
Shape Model (ISM) [12] and Histogram of Oriented Gradient
(HOG) [13]. But in our tracker, we only adopt the HOG
detector, because the HOG detector is more generalized and
has a more widely usage.

B. Crowd Simulator

The crowd simulation algorithm adopted in the proposed
approach is based on the RVO2 library [3]. This model solves
an optimization problem based on the strategy named Optimal
Reciprocal Collision Avoidance (ORCA). It is computational
efficient and only requires the information about the current
position and desired velocity of each pedestrian. Due to the
page limitation, I will not describe the method in detail. For
more details, the reader can refer to the original paper.

RVO2 introduces a concept, namely velocity obstacles, with
the definition as

V OT
A|B = {v|∃t ∈ [0, T ] : v · t ∈ D(pB − pA, rA + rB)} (7)

where pA and pB are the positions for two pedestrians and
rA, rB are their radii. D(p, r) indicates a circle centered
at p with radius r. Basically, V OT

A|B defines the set of
relative velocities of A with respect to B which will cause
a collision in the future within a time period [0, T ]. Therefore,
to find a solution for the collision avoidance equals to find a
set of velocities of pedestrians most adjacent to the desired
velocities, but meanwhile none of them falls into the velocity
obstacle set (that is why it is called “obstacle”). The global
optimal solution can be efficiently computed using linear
programming. The efficiency enables us to run the simulator
multiple times at each frame to get a distribution rather than
a single solution.

In a multiple camera tracking system, the position of each
pedestrian in the real ground plane is easy to acquire using
projection matrix. However, the desired velocity is not explic-
itly expressed since we have no idea about where a pedestrian
will finally move to and how long will this movement takes
place. That is, neither the direction nor the speed of the desired
velocity can be obtained based on the current information. An
alternative way we adopt is to use the historical information.
We use an importance sampling strategy to estimate the desired
velocity based on its derivatives (accelerations) from the last
m frames. Let’s define the acceleration set of a pedestrian
k, At

k = {at−mk , at−m+1
k , . . . , at−1k }, and the corresponding

weights for each acceleration

wt−i
k =

m− i+ 1∑m
j=1 j

, i = 1, . . . ,m (8)

The weight assigned to more recent acceleration will be
larger according to Equation 8. Then following the importance



sampling, a set of n accelerations A′k = {a′k,1, a′k,2, . . . , a′k,n}
(n > m) can be generated for the estimation of a distribution
of desired velocity

v′k,i = vk + a′k,i + εa,k (9)

where v′ki
is the estimation of velocity corresponding to a′k,i,

and vk is the current velocity. εa,k is a zero-mean normal
distribution with variance σa,k ∝ maxi,j ||at−ik − at−jk ||. In
addition, to handle with the sudden stopping situation (i.e.,
the velocity suddenly changes to 0), we also randomly add
some 0’s (n/5) into the set of estimated velocities .

Finally, to reduce the computation, not all possible combi-
nations of velocities of pedestrians are calculated using RVO2.
Instead, for each pedestrian, we pick up the velocity with the
same index (i.e., i) and form n sets Ci = {v1,i, v2,i, . . .}.
So the total number of possible locations calculated for each
pedestrian is n in this case.

C. Global Tracker

The function of the global tracker is to integrate the infor-
mation from the frame trackers and the output of the crowd
simulator to provide a final decision of the current position of
each pedestrian in the real ground plane.

The first step we need to do is to recover the projection
matrix (a 3×3 matrix) for each view. This is done by manually
selecting four corresponding points from different views. Then
the principal-axis based integration is adopted. A principal axis
of a pedestrian is basically the line connecting the pedestrian’s
head to the feet. In our approach, the principal axis is simply
defined as the vertical line in the middle of the patch. If the
result obtained from the frame tracker of each view is accurate,
then the projection of the principal axis back on the ground
plane will intersect at a single point, which is exactly the
position of the pedestrian on the ground plane. It is proven that
the principal axis-based integration is very robust in fusing the
information from different cameras [1], [8].

Therefore, in this proposed approach, the first part of the
global tracker is to use the principal axis-based integration
to combine the information from different views. For each
particle in a frame tracker, we compute the principal axis of the
patch associated to it and then project the principal axis back
on to the ground plane. Then the intersection points between
principal axes from different views are calculated. We also
assign a weight for each intersection point

w0
tr1,p1,tr2,p2 = wtr1,p1 · wtr2,p2 (10)

where wtr1,p1 and wtr2,p2 are the weights of the particles p1 in
tracker tr1 and p2 in tracker tr2, calculated by Equation 5. In
this case, the intersection of higher weighted principal axes
will get a higher weight. To speed up the computation of
intersection, not all the possible combinations are tried, instead
we experimentally choose 2∗N (N is the number of particles
in frame tracker) pairs particles between each two different
views. The purpose is to decrease the calculation complexity.

The integration of the output provided by the crowd simu-
lator is based on radial basis function. For a particular point
g, its “simulation term” is defined as

sim(g) =
∑
q∈Qk

pN (g −Qk) (11)

where Qk is the set of possible locations of pedestrian k (its
size |Qk| = 2N ) and pN (g − Qk) is a zero-mean normal
distribution. For each intersection point gi, the final weight

w′gi = w0
gi + δsim(gi) (12)

And the final location of each pedestrian on the ground
plane is calculated by a weighted sum

G =
1

Z

∑
i

w′gigi (13)

where Z is the normalization factor. After the location for
each pedestrian on the ground plane is decided, we use the
projection matrices Hv’s to project this position to different
views. And the weights for each particle is reevaluated using
a Gaussian filter.

IV. EXPERIMENTAL RESULTS

In this section, we describe in detail our experimental
setting, as well as the results and related discussion. The
programming of this algorithm is done in C++ with the widely
distributed library OpenCV.

A. Experimental Setting

Our experiment is conducted on the PETS 2009 dataset
with medium density crowd (i.e., S2.L2). This part of the
dataset originally has four views. However, according to the
provider, View 4 suffers from frame rate instability, so we
avoid using this view in our experiment. In addition, View 3
has a large tree on the right part of the field of view, which
causes serious occlusions especially with medium density of
crowd, and creates a lot of problem even during annotation.
Therefore, the frame tracking is performed only based on View
1 and View 2 in our experiments, and we use View 1, 2,
and 3 for testing. The image of the ground plane is obtained
using Google Maps. The projection matrix for each view is
calculated using the function provided in OpenCV, based on
the information of a set of four static points.

The ground-truth is obtained by annotation. Each pedestrian
is annotated for its bounding box every five frames, and the
bounding boxes in between are calculated based on interpola-
tion. With the annotation of bounding box, the principal axis
is determined as the vertical line in the middle of the bounding
box. The ground-truth of the position of each pedestrian on the
ground plane is computed by intersecting the principal axes
projected back from View 1 and View 2 (since we cannot
guarantee that all the annotations of View 3 are correct because
of the occlusion from the big tree).

The HOG detector adopted in our experiment also comes
from OpenCV, with the smallest detection size as 48 × 96.
Therefore, in order to keep the detection result acceptable, we



Fig. 2. Some sample images. The top two rows are the results from the tracker with simulation (the two rows are from View 1 and View 2 respectively).
The middle two rows are the results without simulation. The bottom are the corresponding ground truth by annotation. Pedestrians who only appear in one
view are not shown.

resize the original image frame to 1920× 1440, which makes
the smallest pedestrian in the with a similar size as 48× 96.

The parameter setting used in the frame tracker follows
the original work [2]. For example, we set β : γ : η in the
observation model Equation 5 to 20:2:1. The δ in Equation 12
is experimentally decided as 2η (We can also simply set δ = 0
to avoid the influence from the simulator).

For the crowd simulator, RVO2 library, it has 10 parameters
for each pedestrian. Among those 10 parameters, three of them
keep changing during the runtime (current position, current
velocity, and desired velocity) and they are different from
individual to individual. The rest seven of them are: the time
step of the simulation, the maximal number of neighbors each
pedestrian can observe, the maximal speed of a pedestrian, the
maximal observation distance of a pedestrian, the radius of a
pedestrian, the minimal amount of time a pedestrian is safe
with respect to other pedestrians, and the minimal amount of

time a pedestrian is safe with respect to static obstacles. Except
for the time step of the simulation, the rest of the parameters
can actually differ across individuals, but in our experiment
we simply make them the same to all individuals. These seven
parameters are optimized based on the UCSD crowd dataset.
We make the pedestrians in the UCSD and PETS datasets
to have the same radius when projected to the ground plane
so that the parameters trained on UCSD crowd dataset can
be directly applied in the current experiment. However, the
UCSD dataset only has one view, so it is not used in the
current experiment.

B. Results

Figure 2 is a qualitative illustration of tracking for View 1
and View 2, comparing the results from the multiple camera
tracker with/without crowd simulation. For View 3, because
the size of target patch is unknown, we only quantitatively



TABLE I
THE TRACKING ACCURACY WITH/WITHOUT CROWD SIMULATOR FOR

THREE VIEWS. THE STATISTICS IS BASED ON ACTIVE TRACKERS.

View 1 2 3
With simulator 86.9% 87.1% 82.3%

Without simulator 76.4% 77.7% 72.5%

TABLE II
THE MOTP AND MOTA EVALUATION.

MOTP MOTA
With simulator 57.1% 31.9%

Without simulator 59.2% 9.79%

calculated the accuracy of tracking. Only the pedestrians
appear in both views are evaluated.

For each view, we define the tracking as accurate if the
projected point of the position for a pedestrian from the
ground plane to the frame falls into a rectangle we called
estimated feet area. This rectangle has its height equals to a
quarter of the annotation height, its width equals to half of the
annotation width, with its location vertically at the bottom and
horizontally in the middle of the bounding box. The accuracy
of tracking one pedestrian for each view is then calculated as

accv =
# accurately tracked frames

# tracked frames
(14)

Table I shows the tracking accuracy with/without crowd
simulator for three views.

On the ground plane, we use MOTP (multi-object tracking
precision) and MOTA (multi-object tracking accuracy) [14] to
measure the performance of the proposed approach, using a
point-based distance. Let rp denote the radius of a pedestrian
on the ground plane (which is the same as the radius pa-
rameter used in our crowd simulator), ptr and pgt denote the
position from the multi-camera tracker and the ground-truth
respectively, then the distance used in MOTP and MOTA is

s(tr, gt) = max

(
0,
||ptr − pgt||2

rp
− 1

)
(15)

The result of MOTP and MOTA with crowd simulator are
57.1% and 31.9%, respectively. When no information from
crowd simulator is integrated (set δ in Equation 12 to 0),
the MOTP and MOTA are 59.2% and 9.79%. The MOTP
only evaluates the precision for matched objects, and fewer
matches between observations and ground truths will possible
increase its value, so the crowd simulation does not necessarily
improve the performance using this metric. On the other hand,
the result of MOTA is not extremely impressive since the scene
is so complicated with too many pedestrians in it. However,
according to these results as well as the tracking accuracies
in each view, we can easily observe that the performance is
significantly improved by integrating the crowd simulator.

V. CONCLUSION

In this paper, we proposed a multi-camera tracking ap-
proach that combines state-of-the-art single camera tracking-
by-detection method, RVO2 crowd simulation method and the

principal axis-based integration between cameras. The pur-
pose of this paper is to investigate the potential performance
improvement of tracking when we integrate the crowd simu-
lation information into traditional pure vision-based tracking
approaches. The experiments are conducted on PETS 2009
dataset with medium density crowd. Tracking performance is
evaluated for different views. Tracking precision and accuracy
(MOTP and MOTA) are calculated based on the position of
each pedestrian on the real ground plane. The experimental
results show that the multi-camera tracking with crowd simula-
tor integrated significantly outperforms the one without crowd
simulator, which means that the utilization of the relationship
between pedestrian positions is really important and helpful
in tracking.
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